

Quick Start Guide

by Burak Himmetoglu

Supercomputing Consultant

Enterprise Technology Services &
Center for Scientific Computing

E-mail: bhimmetoglu@ucsb.edu

Contents
● User access, logging in
● Linux/Unix basics
● Running jobs
● Compiling & linking libraries

User access
Requesting access:

http://csc.cnsi.ucsb.edu/acct

Accounts are only available to UCSB students / researchers /
collaborators.

Accessing machines
● ssh[option]usarname@machinename.cnsi.ucsb.edu
● [options]:

● -X for graphics in Linux (-Y for Macs)

Remote login:
● Use VPN if not in UCSB campus:

http://www.ets.ucsb.edu/services/campus-vpn/get-connected

● You may also need to download ssh client, Putty, X Window system if using
Windows.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

http://sourceforge.net/projects/xming/

Putty:

Xming:

mailto:usarname@machinename.cnsi.ucsb.edu
http://www.ets.ucsb.edu/services/campus-vpn/get-connected

Linux/Unix basic commands
Basic command structure: command -[options] some_argument

ls [-l, -rt, -h]

mkdir

cd [directory]

man [command_name]

cp [-r]

mv

rm [-r]

List contents in the directory

Make a new directory

Change into a directory

Open the manual for a command

Copy file (or a directory with -r)

Move/Rename file or directory

Remove a file (or a directory with -r)

Linux/Unix basic commands
pwd

cat [file]

more

less

diff [file1] [file2]

grep 'pattern' file

Show the full path of current directory

View file, scrolling

View file, one screen at a time

Like more, more features

Display differences between file1 & file2

Find a regular expression in a file

Example: Look for the pattern PBS in a file submit job

$ grep 'PBS' submit.job
-->
$ #PBS -l nodes=1:ppn=4
$ #PBS -l walltime=2:00:00

Pipes and redirection
Very useful feature of the command line.

command > file

command >> file

command < file1 > file2

command1 | command2

Redirect output of command to a file

Redirect to file, append

Get input from file1, direct output to

file2

Pipe output of command1 to command2

Example: Take input from a data file, run an executable, and print to an output file

$ test.x < data.input > data.output

Pipes and redirection
Example: Check your running jobs, and display only those which started on Wednesday

$ showq -u username | grep 'Wed'
→
1146997 username Running 4 0:21:32:18 Wed Jan 02 08:36:49
1147924 username Running 4 0:02:06:32 Wed Jan 02 11:11:03

If you use only show -q, you will see all the jobs including those that started on a
different day than Wednesday.

Some other useful aspects
Wildcards can replace a string of characters in the command line

*

~

.

..

Match any string of characters, e.g. ls foo* will list

all files starting with “foo”.

Short for home directory, e.g. cd ~ will change

directory to home directory.

The current directory

One directory up the tree, e.g. cd .. will change the

directory one level up.

Using TAB key finishes the current command, filename, directory or shows any of
that match the current string. Very useful for quick typing.

Permissions

-rwxr-xr-- 1 burak burak 656 Jul 14 10:05 qeinput.py
drwxr-xr-- 1 burak burak 656 Jul 14 10:05 inputs_folder
-rw-rw-r-- 1 burak burak 547 Jul 14 10:05 scf.in

- --- --- ---
- : is equal to d if directory
--- : owner read, write, execute
--- : group read, write, execute
--- : others read, write, execute

Permissions determine who can read a file or directory, write to it, and execute it.

Permissions

- rw- --- ---

- rwx --- ---

- rw- r-- r--

- rwx r-x r-x

Numerical values for each permission:
Read = 4, Write = 2, Execute = 1

Add the number value of the permissions you want to grant each group to make a three
digit number, one digit each for the owner, the group, and the world. Use chmod
command with the numerical value to assign the permission:

chmod 600 filename

chmod 700 filename

chmod 644 filename

Chmod 755 filename

User can r&w (4+2)

User can r&w&x (4+2+1)

User r&w (4+2), group r (4),

others r (4)

User r&w&x (4+2+1), group r&x

(4+1), others r&x (4+1)

Permissions
Another way:

Specifically change permissions with letters:

u = user g = group a = others
r = read w = write x = execute

chmod u+rx filename

chmod u+x filename

chmod a+rw filename

chmod a-x filename

Give user r&x

Give user x

Give others r&w

Take x away from others

Creating archives
● tar: Creating one archive from many files/folders. It does not lead to compression

automatically

● zip: For compression

● bzip, gzip : compression algorithms

Examples:

$ tar -czvf arch.tar.gz file1, file2, directory0

Create a gzipped tar archive arch.tar.gz from files file1, file2 and the directory0

Extract arch.tar.gz

$ tar -xzvf arch.tar.gz

Editors

● Several editors are available in Linux: vi, emacs, nano …

● To edit a file, choose you favorite editor, e.g

$ vi file.txt

● Nano is recommended for beginners

● Vi and Emacs are more advanced

File transfer
Several choices exist: SCP, SFTP, RSYNC

SCP usage:

$ scp user@host1:filepath2/filename1 user@host2:filepath2/filename2

Example (from your computer to a directory workdir on Knot):

$ scp file.txt user@knot.cnsi.ucsb.edu:~/workdir/file_copy.txt

You may need a client for transferring files from Windows, such as WinSCP

Globus Online is another option to use, see:

http://csc.cnsi.ucsb.edu/docs/globus-online

Running Jobs
Running jobs that require large resources and time, requires submission to the queue

Job submission to the queue is done by the PBS scheduler

E.g. Suppose, you want to run an executable (prog.x) which is compiled in parallel,
you will need a job submission script (submit.job):

#!/bin/bash
#PBS -l nodes=1:ppn=4
#PBS -l walltime=2:00:00

export NCORES=4
cd $PBS_O_WORKDIR

mpirun -np $NCORES -machinefile -$PBS_NODEFILE prog.x

submit.job

$ qsub submit.job Job submission to queue

#!/bin/bash
#PBS -l nodes=1:ppn=4
#PBS -l walltime=2:00:00

export NCORES=4
cd $PBS_O_WORKDIR

mpirun -np $NCORES -machinefile -$PBS_NODEFILE prog.x

submit.job

● #!/bin/bash : the shell you are using
● #PBS -l nodes=1:ppn=4 : Asking one node, 4 processors per node
● #PBS -l walltime=2:00:00 : Asking two hours of walltime
● export NCORES=4 : set NCORES to value 4
● cd $PBS_O_WORKDIR : change directory to the one where job is

submitted from
● mpirun -np $NCORES … : Run the executable prog.x with mpirun

There are various PBS options available. Simply add them in your script if you need.
Here is a list of some of them:

https://www.olcf.ornl.gov/kb_articles/common-batch-options-to-pbs/

For a serial job to be submitted in queue, use

#!/bin/bash
#PBS -l nodes=1:ppn=1

Some more information can be found on:

http://csc.cnsi.ucsb.edu/docs/running-jobs-torque

To check the queue for the status of your job:

qstat –> detailed report, all jobs running
showq –> less detailed, all jobs running
qstat -u username / showq -u username –> report for the

 user “username”

To cancel a submitted job, use the job id (a number) printed from showq or qstat:

$ qdel job_id

Available Queues on Knot
● Short queue:

● For jobs that run less than 1 hour
● Shorter wait time in the queue
● Ideal for short jobs and testing

$ qsub -q short submit.job

● Large memory:

● For jobs that need to run on fat (large memory) nodes
● largemem: 256GB/node, xlargemem: 512Gb/node

$ qsub -q largemem submit.job

$ qsub -q xlargemem submit.job

● Submitting jobs to GPUs:

$ qsub -q gpuq submit.job

Compiling & linking libraries
● For compiling, first one needs to locate the compiler and set the environment variables:

Common environment variables:

$PATH : It is used to define where to search for executable
files. Type “echo $PATH” to see which directories are listed.

$LD_LIBRARY_PATH : Same as $PATH, for searching libraries for
linking.

● Check the environment variables using env command.
● Environment variables can be set in the .bashrc or .cshrc (depending on the shell

you are using). This allows them to be specified every time you login, instead of setting
them manually.

Below is an example for linking Intel compilers, MKL libraries and setting up openmpi as the
MPI on Knot cluster:

OPENMPI

export PATH=/opt/openmpi-1.6.4/bin/:/usr/local/bin/:/sw/bin:$PATH

Use Intel's scripts to set environment variables in 64bit
architecture

. /opt/intel/composer_xe_2015/bin/compilervars.sh intel64

. /opt/intel/composer_xe_2015/mkl/bin/mklvars.sh intel64

.bashrc

This example uses Intel's scripts to automatically set environment variables for Intel
compilers and MKL libraries.

We just need to specify the MPI implementation

Check executable locations using which command:

$ which mpirun
/opt/openmpi-1.6.4/bin/mpirun

$which ifort
/opt/intel/composer_xe_2015.2.164/bin/intel64/ifort

For using other compilers, libraries, search for them using locate command and find
where they are located. Then, you can change your environment variables accordingly.

$ locate -b mpirun
/opt/intel/composer_xe_2013_sp1.0.080/mpirt.bac/bin/ia32/mpirun
/opt/intel/composer_xe_2013_sp1.0.080/mpirt.bac/bin/intel64/mpirun
/opt/intel/composer_xe_2013_sp1.0.080/mpirt.bac/bin/mic/mpirun
/opt/intel/composer_xe_2015.2.164/mpirt/bin/ia32/mpirun
/opt/intel/composer_xe_2015.2.164/mpirt/bin/intel64/mpirun
…
…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

